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The impact of a viscous-plastic bar against a rigid abstacle was considered
in (1] . It was assumed that the plastic deformations of the bar were con-
fined to the reiion of impact, with the rest of the bar moving as a rigid
body. Separately, it was assumed that the boundary between the plastic and
the rigid regions moved from the point of impact towards the free end, This
natural assumption has recently aroused some doubt, chiefly on the grounds

of the inherent implication that a bar of infinite length would become loaded
and plastic along its entire length immediately upon impact t the rigid
obstacle. It was conoluded that upon the impact of a bar of finite length,
the plastic region should spread instantaneously over the entire length, with
the boundary propagating from the free end.

It will be shown in this paper that the boundsry actually originates at
the end of impact and that when 7 - » (1 418 the length of the bar), the
average velocity of transition of the boundary tends to infinity over any
finite portion of the bdar.

1, We shall use a Lagrange system of coordinates, moving together with
the obstacle with velocity v, in such a way that at the initial instant the
bar is at rest, with the y-axis directed along the bar, the obstagle is at
x = 0O ., We shall adopt the notation: v(a,os is the velooity, ol(t, x) 1s
the axial stress, ¢ is time, I is the length of the bar. We shall use the
equations of state in the form

3

G2 =0 for |3|< |5l (1.4)
8
E—Z—:}L(G—GO)IG—GOIQ for |G |> ool (1.2)

We shall assume the following: 4in the plane xt there exists a curve

x = x,t which divides the region t >0,
I>z>0 into regions D, and D, (Fig.);
the velocity v(t, x) in D, satin!‘ies (1.2)
and the equation of motion

Povt = Sx (1-3)
together with the boundary conditions (1.4)

T

&

v (t, 0) = Upy [ (0, Cl') =0, Ty (f, o (l}) :. g
and the velocity v(¢t, x) in D, satisfies
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(1.1) and the equation of motion

dv So
PO = T T "m(2) (1.5)
with the initial condition u{C, x)} =0 .
The function v(¢, x) 1s continuous for all [>z>0, ¢t >0, appart from
= 0 . The unknown functions are v(¢, x), o(¢, x) and

We shall further stipulate that .v > 0,v, > 0,0 <0, 0, < 0. The assumptions
of [1] correspond to @ = 0, x,(0) = 0 .

2. We shall now prove that x,(0) = 0 . Equations (1.2) amd (1.3), toge-
ther with the boundary conditions tl.'t), fully define for regiol
function (%, x) which depends upon x,(t) and is in a particular case
explicitly defined by

v_ (t) = lim v (¢, 7) for x> % (t) — O

-]
=
- e

Similarly, for region 2., Equation (1.5) explicitly defines u(¢, x),
dependent upon x, (t?, as well as p (}) = lim v (f, 2) when z — 2, (t) + 0. By
virtue of the con%in\uty of v(t, x) over ; >0, l>2x>0 (apart from point
t= 0, x=0), we have

v_ (@) =v, () @1

which must be satisfied by a suitable cholce of x,(t) . We shall show that
if x,(0) > 0, then (2.1) is not satisfied. To do 8o, we shall assume that
%, (0) > O , we estimate the upper limit of u_{t) and the lower of v, (z)
and prove that as ¢ - O the upper estimate is below the lower; that is,
v_(t) < v,{¢) which contradicts (2.1).

lLet us first evaluate v,(¢) . From (1.1) and (1.5) we have
1

1 [ o | Go |
n{t)=v( =\ — —
1() (vx) Po§l TO(E) dE> Pol
Since zp<{!/, this equation holds also for ,(0)= 1.

To evaluate v_(¢) we shall use the condition v,< 0 in D,; this con-
dition follaws from o0 < O and (1.2) . The quantity o(t, x) is defined
explicitly by Equations (1.2) through (1.4), and the assumption that o < O
may not always be valid; but the question of solvability of the problem as
a whole is beyond the scope of the present argument.

Thus we shall estimate v_(¢) on the assumption that x,(0)>0 . If this
were true, then the inequality ¢,> O would also hold and x,, xy and x,
would satisfy z,(t) >z, >« 7, >0, for t;>t>0 and wouid o%henvise be
arbitrary. We shall prove that

Sv(t, 2yde=0(1) t (2.3)

where 0(1) -~ O when ¢ - O . Taking into account (1.3) as well as ¢ < O,
el >log,| , we have

t (2.2)

X, xq t t 1
dls (s, x)—
Po g v(t, x)dx:% X ﬂ'aiz)‘_%]d“"d?"—’\["‘(sﬂ—'d)"sol ds —S [5 (s, 23) — 6ol ds
X3 %2 0 0 0

x4,

< —\[6(s,x3) — o) ds < — K %[o(s,x)——co]dsdx
0 X2 0
here we have made use of
¢
a .
ES [—a(s, )+ 6o] ds = —pov (t, 1) <0
0
Using (1.2) and Hlder's inequality (which here holds also for q = 0),
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we obtain
3?: t o ;\:, t i.jl,],
\ \ [— o(s, x) + 6] ds dx < [(za — xg) 1] 1T% (\ R [— 3 (s, 2) |- 5] T * dsdr |
X2 0 %2 0

1

(A e N t
= [(1‘3 —xz) t]1+<1 (—!I- g [2’ (S, 1,‘2) — 0 (S, 1'3)] dS> — [(:,-3__ Tg) []1'1“1 [0 (1) ”1 sa 0 ('l)t
n

« t

which proves (2.3). Since v, <0

Xa
N

\ v (t, x)dx::0(1)t

v_(t) S vt x8) <<

Ty ~— X3
X3

that 1s v.(¢) = 0(1)t . 1In the light of (2.2) this gives wv.(z) < v, (%)

at sufficiently small values of ¢ which contradicts (2.1) and thus proves

that x,(0) >0 1s inadmissible. It is worth noting that this proof is inap-

plicable for ! =« or |eo,| = 0, since in such cases the right-hand side

of (2.2) becomes zero.

3. We shall next assume that = 0 and introduce the function «(x) ,

the inverse of x,(t) , that is «t(x,(t)) = ¢. For this function we obtain
the estimate

x2
r(x)gxw(al)%i_—;)) (3.4)

where #(f£) -~ O when & - O . This estimate indicates, in particular, that
when | - » the curve x = xo{(t) approaches the x-axis.

In the following we stipulate that x,’(¢) > O when (<7 and assume
that ¢ < T everywhere. For convenlence we shall also assume that u « 1
and p,= 1 . With these assumptions, Equations (1.2) and (1.3) can be trans-

formed into the heat conduction equation

Z,(t) vy = vy {3.2)
without affecting the remaining assumptions of
Section 1,

To solve (3.1) we shall construct in the
x, t plane a rectangle i >t > tam>2 20,
within which m > =z, (t;), T > ¢, > ¢, > 0,and out-
side which t,,i; and m are arbitrary (Fig.
2). We shall introduce into this rectangle an

¢ L auxiliary function y*(¢, x) which satisfies
¢ Y (3.2) within the rectangle and the following
m conditions on its boundary:
Flg. 2 W (4, 0) == vo, w (te, 2) =0, u. (t,m)=0 (3.3)

Funétion u*(t, x) can easily be written in an explicit form, but we shall
need to refer to only some of i1ts properties which can easily be proved to be

t \ t-—1o .
ux™ <0 for T m, um(t,m)::u1<;l§-,1),“—;voh( o ) (3.4)

where h(g) is some function independent of the parameters of the problem;
it can be shown that Elh{(E)— 0 when & - O . We shall prove that
v (t, 2o (£)) >u™(t, m). For this purpose we shall introduce function

w{t, T)=v (L, ) — u™ (Lo, x).

Within the quadrengle J,; bounded by lines t=1o t=1h, z=0 and by curve
x = x,(¢t) , function » satisfies (3.2) and the following conditions:

w(t,0)=0, wita)=0(te,a),  welt,2(t)=—w"({2() (35
According to.the theorem of maxima, functlon p has a minimum either at
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x=0 oron t=1t, , oron x =ux,(t) . However, bg virtue of (3.5) func-
tion p cannot have a minimum on t?le curve x = X, {¢t) , since in that case
one would have at the point of munimum w, 0. Since p =0 at x « 0 and
w>0 at ¢ =t,, then w >0 everywhere within D,, and in particular,

w (¢, Zo (t))>0. Whence we conclude, bearing in mind that y,"< O,

[ 7
v (8, 70 (£)) 3> W (2, a0 (1) > w™ (8, m) = voh (g ”) (3.6)

Since this equation holds for any to >0, m >z (f), and since n(g) 1s
continuous, it follows that (3.6) holds also for t,==0, m =z (f1). Prom (1.5)
we have t

| Sol fool

"ot w (o) = | T <y (3.1)
0

From (3.6) and {(3.7) we obtain (writing t for ¢i, since ¢, can be
chosen arbitrarily)

{oo] ¢
Tzt m*t > voh ( Z2 (1) ) (3.8}
or
[ 6ol 202 t
vo(l'o—wo) Tt > miq-h (zﬁ) (3‘9)

We shall introduce function pg{g) defined by Equation

HEEN =%

Function £~'x{E) tends to zero when £ - O , and there exists g > 0,
such that when < g function £-*x(ez) increases monotonously; therefore
(0) = 0 and H%g) is determinate and monotonous for £ < g~ h(g) . From
3.9) we have |60 22 )

1 {z) < z*H (W_‘_—x; {3.10)

It follows from this equation that when I » = then «{x)=0 for any
fixed value of x .

It also. follows from (3.10) that if

zo=A(t) Vi
when ¢ ~ O , then A(3) =« when ¢t = 0 .

In conclusion, the author wishes to thank N.V. Zvolinskil for reviewing
this work.
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